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A kinetic equation for the motion of a particle of arbitrary size and mass 
through a moderately dense gas is derived and discussed. The "long-time tail" of 
the velocity correlation function is calculated and found to agree with existing 
results. For a Brownian particle, the theory gives the Stokes-Einstein law for the 
self-diffusion coefficient, with the shear viscosity given by its Enskog value. 
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1. I N T R O D U C T I O N  

The diffusion constant  (D)  and the velocity correlation funct ion (VCF) of a 
tagged, hard-sphere particle moving in a surrounding fluid may  be accu- 
rately calculated f rom the Loren t z -Bo l t zmann  equation, (1'2) provided that 
the fluid is sufficiently dilute and that  the collision radius of the tagged 
particle (al)  is much  less than the mean  free path of the surrounding gas 
(l). If  we now increase the size of the tagged particle, so that  either 
a l / l  >> I or  a ~ / l ~ l ,  but  still retaining the low-density fluid, the Loren t z -  
Bol tzmann equat ion no longer works and  a new kinetic theory is needed. 
Recent  work has shown that  a very good candidate  equat ion for this role is 
the repeated-ring approximat ion  (RRA),  first derived by Ernst  and DorY- 
m a n  (3) and discussed in great detail by  D o r f m a n  in Ref. 4. W h e n  the 
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tagged particle is small, the RRA correctly reduces to the Lorentz- 
Boltzmann equation. Furthermore, in the Brownian particle limit, when the 
tagged particle is both large and massive, the RRA yields the expected 
Stokes-Einstein behavior, (5'6) where the fluid transport coefficients in- 
volved in these relationships are given by their low-density, Boltzmann 
values. Finally there are very persuasive arguments (7'8) indicating that the 
RRA becomes the exact kinetic equation for the motion of a tagged 
particle of any size in a dilute gas, provided that the particle be sufficiently 
massive. Unfortunately, the RRA leads to equations that are very difficult 
to solve for a particle of arbitrary mass and size, but recently we believe 
we have made some progress in this regard by (9) employing the varia- 
tional methods first introduced into kinetic theory by Cercignani and co- 
workers. (1~ Although more work should be done to check more carefully 
the approximate numerical methods that were used, we believe that the 
values for (the diffusion constant), D, reported in Ref. 9 are fairly accurate 
estimates of the solution of the RRA equations. Thus, for a dilute fluid, 
there exists both a very plausible kinetic theory of tagged-particle motion 
and also what we believe to be a reasonably accurate way of solving the 
equations numerically. 

A problem of even greater interest is that of describing tagged-particle 
motion in a denser fluid. The RRA equation describes a tagged-particle 
interacting with a fluid which, far away from the particle, obeys the 
linearized Boltzmann equation. As the fluid becomes denser, the Boltzmann 
equation ceases to give a good description of its behavior, and so we cannot 
expect the RRA to be an adequate kinetic theory in such a situation. We 
require a more general, higher-density kinetic theory. If the surrounding 
fluid is very dense, say, a liquid, then at present there exists no completely 
adequate kinetic description, though the mode-coupling approach of 
Leutheusser (11) seems to have made progress in this respect. In this paper 
we shall restrict ourselves to considering the simpler problem of attempting 
to find a good, approximate kinetic theory for the tagged-particle motion in 
a moderately dense gas. This problem has already received a lot of 
attention. Provided that the tagged particle is small, an excellent description 
is given by Enskog kinetic theory31'2) This theory, just like the Lorentz- 
Boltzmann theory, only takes into account uncorrelated binary collisions 
between the tagged particle and gas particles, but the collision frequency is 
modified by a factor of the radial distribution function at contact. Thus the 
theory includes corrections to the Lorentz-Boltzmann theory arising from 
the static, equilibrium properties of the system to all orders in the gas 
density, but ignores any effects arising from dynamical correlations coming 
from more complicated collision sequences. So, although the theory is not a 
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consistent theory in the density of the gas, in practice it turns out to be 
remarkably successful over a wide range of gas density. (12) When the 
tagged particle becomes bigger, however, the Enskog theory fails. In order 
to describe the motion of a larger tagged particle in a moderately dense gas, 
one might imagine that an Enskog version of the RRA (ERRA) would be 
needed. This theory would be expected to reduce to the Enskog theory for 
small particles, and, in the Brownian limit, would be expected to yield the 
Stokes-Einstein relation with the Enskog shear viscosity. 

Much progress has already been made toward obtaining such a theory. 
Dorfman and Cohen (13) (DC), in a very careful analysis, derived a ring 
kinetic theory, which consistently took into account those effects of equilib- 
rium static structure and collisional transfer of momentum which affected 
the long-time behavior of the VCF. One result of including these effects 
was to introduce Enskog transport coefficients into the coefficient of the 
long-time tail. Mazenko (14) also has developed a ring theory which yields a 
long-time behavior of the VCF different from that found by DC; in its later 
form the difference is a multiplicative factor of ( D / D e )  2, where D and D e 
are the true and Enskog values of the diffusion constant respectively. A 
more consistent theory would set D = D E here, whereupon the result of DC 
is recovered. Although the ring theories are good for studying the long-time 
tails of correlation functions, it is well known from low-density studies that 
repeated-ring collision sequences, at least, must be included in any theory 
that hopes to yield Stokes-Einstein behavior. Mehaffey and Cukier O5) 
(MC) have proposed such a repeated-ring theory which contains, in addi- 
tion to the ring events discussed by DC and Mazenko, many other 
repeated-ring events. It is our belief, though, that a still more complex 
description is required in order to obtain the Stokes-Einstein result. In the 
remainder of this paper, we derive an ERRA theory, which we show both 
predicts an asymptotic long-time tail coefficient for the VCF in agreement 
with that obtained by DC, and also yields the Stokes-Einstein relation for 
Brownian motion with transport coefficients given by their Enskog values. 
We analyze the nature of the approximations basic to the theory. In the 
final section we give a brief discussion of our results and consider possible 
ways in which the theory might be extended to tagged-particle motion in a 
fluid of arbitrary density. 

2. THE REPEATED-RING EQUATIONS 

We wish to obtain a set of approximate equations so that we may 
calculate the VCF of a hard-sphere tagged particle, denoted by particle 1 
moving in a fluid of hard spheres. To do this we use the hard-sphere 
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version of Mori's generalized Langevin equation. (~6) This technique has 
previously been used by Leutheusser, (~0 and also by Cukier et aL, (6) and a 
very closely related approached was employed by Konijnendijk and Van 
Leeuwen.(,7) We take as variables the quantities 

and 

A ( i )  ~ A ( 7 , )  = ~(71 - u ( la)  

m 

B(1,2)  ~ B(V,,72,~,2 ) 

k j > ]  ) 

t 121 > .1 (lb) 

In these equations the barred variables are field variables, whereas the 
unbarred quantities are dynamical variables. The position and velocity of 
particle i are denoted by r i and vi respectively, and rl, = r I - r~ .  The 
Maxwellian velocity distribution function is denoted by %(1), for a particle 
of mass ml, and ~0(~:) (i > 1) a particle of mass m. G(?) represents the 
radial distribution function for fluid around the tagged particle, and p is the 
number density of the fluid. The reason for the restriction u_pon the values 
of ]~,2[ in Eq. ( lb)  is that for ]~12] < al, the value of B(1,2) would be 
identically zero. If these values were to be included there would not exist 
the inverse to the correlation function (BB), which is required in the Mori 
formalism. Finally we note that we should work in a grand canonical 
ensemble, again so that the inverse of (BB) might exist. This last point is 
discussed in detail by Ronis, Bedeaux, and Oppenheim. (18) 

We now wish to calculate the correlation function (A([;z)A([')), 
given by 

(A (1 ; z)A (T')} = fo~ dt e-Zt(A (1 ; t)A (1')) (2a) 

The Laplace transform of the VCF, which we call C(z), is given by 

C(z) = f l aT1  (71" 7'0<A (T; z)A (T')> (2b) 

Mori theory allows us to rewrite Eq. (2b) in the form 

c(z) = ff 7, (71.7',),od),od')eA.(1; 1,) (3a) 

where RAA (1; 1') is obtained from the coupled equations 

RAA(1 ; 1') * R~1( I ' ;  1") + RAn(l;  1'2) * R ~  1 (1'2; 1") = 6(71 - 7~') (3b) 
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and 

RAA(1;I')*RAB(I';I"3)+ RAB(1;I'2)*Risl(I'2;I"3)=O (3c) 

where the star means integrate over repeated variables, the range of the 
spatial integral being the whole of space exterior to the collision sphere. The 
functions R ~  1 , R ~  l, etc. are given by 

R ~ ' ( 1  ; 1') = z(A(I)A([')) - ( [ i S +  A (T)]A (1')) (4a) 

R ~  l ( l  ; 1'2) = - ( [ L z ~ +  A (1)]B(T',2)) (4b) 

R ~  1 (12; 1') = - < [ i S +  B(f2.) ]A (T')) (4c) 

and 

R ~  l (12;1'3) = z(B(T2)B(I'3)> - ( [ iS+ B(-f2)IB(I'3)> 

- ( [ i J + [ z -  Oi~P+]-lOiJ+ B(12) ]B( i '3 ) )  (4d) 

i S +  is the hard-sphere, pseudo-Liouville operator which propagates a 
variable forward in time. For backward propagation the required operator 
is denoted i S .  The explicit forms of i S +  (19) are given by 

iS_+ = ~] v i- V i + 1 ~] T_+ (/j) (5a) 
i i ~ j  

where the binary collision operators T_+ (/j) are given by 

2{"  ^ A _ , ,  ^ A 

T_+ (/j) = %-JdO Iv/j-o[O(+v/j �9 a)8(r,j - o/so) • (b(i , j)  - 1) (5b) 

In this equation, o/j is the collision radius of particles i andS, which is equal 
to a I if one of the particles is the tagged particle and is equal to a otherwise. 

is the unit vector along the line joining the center of par t ic le / to  particleS, 
O(x) = 1, x > 0, and equals zero otherwise, and the operator b(/j) converts 
the precollision velocities v/, vj into the postcollision velocities v~ and v~, 
where 

u = V i  - -  2/~/j ~  -v/j) (6a) 
m i  

and 

v~=vj+ ~a(a.v0 ) 
m j  - 

(6b) 
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where v~j = v i - vj, m i is the mass of particle i, denoted by m I if i = 1 and m 
otherwise, and #/j is the reduced mass of the particles i and j .  Finally, the 
operator Q in Eq. (4d), is the Mori projection operator which projects a 
dynamical variable onto the space orthogonal to the variables A and B. 
Clearly any such projection will leave behind only irreducible three-particle 
terms, and later on we argue that this memory term in Eq. (4d) contains 
only dynamical events over and above repeated-ring events, and so for a 
moderately dense gas may be ignored. 

We now introduce the functions ~(T) and 0(12) defined by 

and 

�9 (T) = f d i  ~'(I')VRAA (l'; 1) 

o(i~) = f a t  ,o(T')V'R,,B (1'; l, 2) 

(Ta) 

(7b) 

In these integrals di------dv 1 and later on we use the notation dTd72 

---dVld~2d~2 . We may now multiply Eqs. (3b) and (3c) by Vlr and 
integrate over vx, which yields the exact kinetic equations 

and 

,I,(T') �9 R ~  ' (1', 1) + 0(T'~) �9 R ~ '  ( i '2;  1) = V,%(T) (8a) 

�9 (T') �9 RAB~ (1'; 12) + 0(1'3) * R ~ '  (1'3; 12) = 0 (8b) 

The VCF is given in terms of ~(T) by 

c ( z )  = f aT (8c) 

We now write out Eqs. (8a) and (8b) explicitly, dropping the third term on 
the right-hand side of Eq. (4d), the memory term. We obtain 

z,I,(1) - ~,G(al)fa2 %(2) ~+ (12)r 

-ofd2~o(2)G(12)[~,-  V] + ,~. V~ + T+ (12)]0(12) 

- 0 2 f d 2 d 3 % ( 2 ) % ( 3 ) [  G(123) - G(12)G(13)] T+ 03)0(12) 

- pz fd2  d3 ~o(2)~o(3) G (I 23) T+ (23) 0 (I 2) = v I (9a) 
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and, for Irl21 > al, 

zG(12)O(12) + zp f d3~o(3)[ G(123)-  G(12) G(13)]0(13) 

- G(12)[v~. Y, + v 2. V 2 + T+ (12)]0(12) 

-  fd3 Vo(3)[ V(123)- G(12) (13)] T. (12)0(03) 
- pfd3~o(3)G(123)[ T+ (13) + T+ (23)(1 + P23)]0(12) 

-0fd3%(3)[ G(123)-  G(12)G(13)] 

X (v~" V 1 + v 3- V3 + r+(13))0(13) 

- p2fd3 d4 0(3)+0(4)[ G(1234) - G(12)G(134)] T+ (34)0(13) 

o2fa3d4,o(3),o(4)[ G(1234)- G(12)G(134)- G(13)G(124) 

+ G(12)G(13)G(14)] r+ (14)0(13) 

=  02)T+ ( 1 2 ) , I , ( 1 )  

p(d3e~o(3)[ G(123) - G(12)G(13)] T+ (13)r (9b) + 

and we have made the approximation that 

0(1'3) * M(l '3; 12) ~ 0 (9c) 

where 

M(l'3; 12)= ([ i S +  ( z -  Oif+)-lQiJ+ B(l'3)]B(12)) (9d) 

the memory term. In these equations we have dropped the overbars on the 
variables, as from now on all the variables will be field variables un- 
less specifically stated otherwise. We have also used the abbreviation 
G(12 . . .  n) to represent the n-particle static distribution function for fluid 
particles surrounding the tagged particle. The operator P23 permutes the 
indices 2 and 3. The restriction to values of Iri21 >1 al, in Eq. (9b) arises 
from the restricted range of values of Irl2[ allowed in the variable B(12). 

We now wish to justify in more detail the approximation made in Eq. 
(9c). We want to show firstly that the term 0 * M contains no term of the 
form T+(12)0(li), and secondly that the dynamical collision sequences 
contained within it are more complex than are required by a repeated ring 
theory. 

To do this, we write out this term more fully, this time using barred 
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variables for field variables, unbarred for dynamic variables. We have 

0(]"3)* M ( l ' 3 ;  12 )=  ( [ i J +  (z - Qi.f+ )-'Qi.af~+ ~ O(lj)]B(12)I 
\L j > l  J / 

(10) 
The definition of the projection operator Q shows that 

k > l  k j> l  

Thus, i J +  [z - Qif+ ]-IQiS+ 0(l j )  describes a binary collision of either 
particle 1 or j with a third particle, followed by some form of propagation, 
ending up with a binary collision, described by the i S + .  This would 
appear to constitute a more complex sequence of events than is required in 
a repeated-ring theory, for a repeated-ring theory only has terms of the 
form static distribution function times a binary collision operator or free 
streaming operator acting upon @(1) or 0(12) in Eq. (9b). To make this 
clearer, by definition of Q the term [z - Qi~4~+ ]-lQi~P+ 0(l j )  is orthogo- 
nal to the variables A (7) and B(12). Thus this term contains no part that is 
of the form static distribution function times O(lk), for some fluid particle 
k, for this would then be a linear combination of the variables A and B. 
Hence the memory term, Eq. (9c), makes no contribution to ring or 
repeated-ring events. Furthermore, we can show that it contains no term 

n ~  

involving the operator T+ (12) acting upon something. If there were such a 
contribution, it would be contained in the term 

(j~>,IiS+(lJ)[z-QiS+]-'QiS+k~> O(lk)l 

8(~12 - r,s)8(V 1 - u162 - -  Y j )  ) • 

where iS+_ (l j )  = v 1 �9 71 + vj- V / +  T_+ (l j). However, using the stationary 
relationship for hard spheres, we may reexpress this correlation function as 

- ( [ ( z - Q i S + ) - I Q i S + k > I  ~ O(lk)]  Qi~f_(lj) 

X 

which is zero, because Q acting upon a two.body term is zero. Hence the 
memory function contains no contribution involving T+ (12) or (v I . V l + 
v 2 �9 V2) acting upon a function of 0(12). This point is important, because 
the coefficient of the T+ (12)@(1) and T+ (12)0(12) terms in a repeated-ring 
equation have, in the past, been a matter of controversy; these terms 
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determine the boundary conditions obeyed by 0 at rl2 = a 1. As will soon be 
shown, our theory gives the exact boundary conditions, which further 
supports the arguments given above. 

As they stand, the proposed ERRA equations, Eqs. (9a) and (9b), look 
rather complicated. It is possible, though, to simplify them somewhat. 
Firstly, we note that the value of an operator, ()(12) acting upon 0(12) at 
Ir~2l = al, in either of the equations, is obtained as the limit of O(12)0(12) 
for Ir121 > a,  as Ir121 ~ a.. Thus 0(12) should be regarded as a continuous 
function at 1r121 = a ,  and hence the only terms in Eq. (9b) involving 6 
functions at Ir121--al come from the terms involving T+ (12). We can 
therefore split these terms off to give boundary conditions at Ir12] -- a ,  a 
procedure discussed by Van Beijeren and Dorfman. (5) Secondly we can 
make use of the hard sphere version of the YBG hierarchy, which gives (17~ 

V1G(12 ) - G(al)VIW(12 ) = oa,~fd~ d,~ G(123)8(,-1~ - alO)~ (12a) 

v , c ( 1 2 )  - c ( a l ) v , w ( 1 2 )  = - p , , 2 f a r 3 a ~ ( 1 2 3 ) ~ ( r 2 3 -  a~)~ (12b) 

and 

73G(123 ) - G(123)73W(123 ) = pa2fdr4dO G(1234)8(r34 - a~)O (12c) 

where W ( 1 2 . . .  n) = 0, if any particles overlap, and = 1, otherwise. 

(12d) 
We finally obtain 

~ , t , ( 1 )  - oC(a,) f a2 ~,o(2) r+ (12)~(1) 

-o~fd2d3,o(2),o(3)I G(123) - G(12)G(13)] T+ (13)0(12) 

oa(al)fa2,o(2) K (12)0(12) = v 1 (13a) 

zG(12)O(12) + zo f d3,I,o(3)[ G(123) - G(12)G(13) ]O(13) 

- G(12)[Vl. 7 ,  + v 2. V2]0(12 ) 

- ofd3eoo(3)G(123)[ T+ (13) + r+ (23)(1 + P23)]0(12) 

-ofd3,o(3)0(13)[ G(12)G(13)73W(13 ) - G(123)V3W(123)]v 3 

- pfd3%(3)[G(123) - G(12)G(13)Iv I �9 710(13 ) 

- o l d 3  d4 4~o(3)ffo(4) I G (1234) - G (124) G (134)/G(14) ] 

• r .  (14)0(13) = 0 (13b) 
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for [r~21 > a 1, and finally the boundary conditions 

G(al) [ T+ (12)~(1) + T+ (12)0(12)] 

+ofd3 q,0(3)[ G(123) - G(12)G(13)] T+ (12)0(13) = 0 (13c) 

We have introduced the modified binary collision opearator T+ (12) 
into Eq. (13a). It is given by (19) 

T+ (12) = T+ (12) - v,2. VIW(12 ) (14) 

We now would like to compare these equations with previous ring and 
repeated-ring equations. The ring equation of Dorfman and Cohen may be 
written in the form of two coupled equations, the first one given by Eq. 
(13a) without the p2 term on the right-hand side, and the second by 

Ez - v~- Vl - v 2 . 7 2  - oA(1213)  - 0 3 ( 1 2 ) ] 0 ( 1 2 )  = G(al)T+ (12)~(1) 

(15) 

where 

A(1213) = fd3 q~0(3)[ G(al) T+ (13) + g(a) T+ (23)(1 + P23) 1 (16a) 

and A(12) is the mean field term, given by 

A(12)0(12) = fd3 q~0(3)I V3c(23 ) - g(a)V3W(23)]v30(13 ) (16b) 

g(r23 ) and c(23) -- c(r23 ) being the radial distribution and direct correlation 
functions of the pure fluid, respectively. Actually we have modified DC's 
equation slightly in two ways. Firstly we have allowed the tagged particle to 
be of a different size than the fluid particles, and secondly we have changed 
their equation so that the particle propagates forward rather than backward 
in time, so that we changed the operator i S _  used by DC to i J + .  

For large values of [r12[, Eqs. (13b) and (15) are equivalent. To show 
this, we first find the large - rL2 form of Eq. (13b), which simplifies the G's. 
Next, we note that we have used an unusual (if straightforward) version of 
the Mori formalism," which avoids taking some inverses; this is why, e.g., 
the term linear in z on the left-hand side of Eq. (13b) appears more 
complicated than the usual zO (corresponding to O0/Ot) appearing in 
Eq. (15). Thus, to make the comparison, we must reintroduce the inverse, 
which in fact requires multiplication of the entire equation by 6(v 2 - v3) - 
pc(23)q,o(V2). The result is the left-hand side of Eq. (15). Of course, we do 
not obtain anything like the right-hand side, as we have already removed 
the singular parts of Eq. (13b) to obtain the boundary conditions. For 
smaller values of [r121 the equations are different, largely because Eq. (13b) 
takes into account more details of the fluid structure as perturbed by the 
presence of the tagged particle. The boundary conditions at [rl2 [ - a 1 are 
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very different. In the ring theory Eq. (15) is true for all ]rl2], and the 
boundary conditions are obtained by equating the G(al) T+ (12)(1)(1) term 
to the effects of the gradient operator acting on a discontinuous function. 
In Eqs. (13), the function 0(12) is continuous at Irl21 = al, the coefficients 
given by Eq. (13c). 

The first RRA equation of Mehaffey and Cukier (ls/ is identical to 
that of DC, and the second may be obtained from Eq. (15) by adding 
G(aOT § (12)0(12) to the right-hand side. We again have modified their 
equations somewhat for the sake of comparison, firstly by doing the same 
things we did to the ring theory of DC, and secondly by adding on to their 
equations the mean field term obtained by DC. Again, for large Ir~21, their 
equation is equivalent to Eq. (13b), and contains less information about the 
fluid structure around the tagged particle compared to Eq. (13b) at smaller 
values of Ir~21- Finally, the boundary condition obtained by MC at [r~21 -- al 
are given by 

G(a,)T+ (12)[ 0(12) + ~(1)] = 0 (17) 

a form slightly different from Eq. (13c). 
In sum, our proposed ERRA equations become identical to those 

obtained by previous authors in the limit of large ]rl21, but for smaller 
values of ]r]21, Eq. (13b) contains more complicated terms than have 
previously been considered. The boundary conditions are also different in 
the various theories. As mentioned earlier, however, our boundary condi- 
tions are exact. To show this, first note that, according to definitions in Eqs. 
(1), (3)-(5), and (7), 

BC(12) =_f dl'd2"O(l'2",z)(B(l'2')B(12)) 

+ fd 1' q~(l', z)(A (I')A (1))Pq50(2) G(l 2) 

= f dl'dl'eOo(l')v]((AA)-l)l ', I"(A(I",z)B(2)(12)) (18) 

where B (2) is the true two-body part of B, that is, B (2) is given by Eq. (lb) 
without the second term in the parenthesis. 

Now, it is necessary that T(12)(A (1", z)B (2)(12)) = 0. Without going 
into detail, this is because the T simultaneously converts B(2)(12) into 
(B(2)(Vl, v2,r12 ) --B(2)(V'l,V~,rl2)) and requires that rj2 be on the collision 
sphere of a tagged-particle-bath-particle pair. On that sphere, since the v 
dependence of B (2) is just the density or expectation of getting that v, 
B(2)(v) and B(2)(v ') must give the same result when averaged with A(z). 
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This follows from nothing more than the specularly reflecting boundary 
condition at the surface of two smooth spheres--every v immediately 
becomes a v', so the expectation of v and v' are equal. Thus 

T(12)BC(12) = 0 (19) 

Combination of Eqs. (18) and (19), along with the use of explicit expres- 
sions for (BB)  and (AA)  in Eq. (18), leads directly to our boundary 
condition, Eq. (13c). So, for a moderately dense gas, any errors in our 
theory must reside in the "boundary layer" (r12 ~> al) behavior of Eq. (13b). 
This equation is, to be sure, the first attempt to treat the boundary layer at 
all, but the treatment is approximate. 

Finally we briefly discuss some of the collision sequences contained in 
these RRA equations. To do this, we first subtract Eq. (13c) from Eq. (13b), 
and write the resulting equation in the form 

~ -1(12)0(12) = G(al)T + (12)*(1) (20) 

valid for Ir~21/> a~, the limit as [r121 ~ a 1 to be taken as described previ- 
ously. This may be formally inverted and the resulting solution for 0(12) 
substituted into Eq. (13a). Thus we obtain 

1) - oa(al) f d2,o(2) T+ (12)*(1) z*(  

-o26(al)fd2d3,o(2),~o(3)[ G(123) - G(12)G(13)] T+ (13) 

• RR(12)T+ (12)*(1) 

-oG2(aOfdZeoo(a)f'+ ( 1 2 ) ~ ( 1 2 ) T +  (12)*(1) = v 1 (21) 

where again the operator ~ ( 1 2 )  requires that ir121 >t a~. If the third and 
fourth terms on the left-hand side of Eq. (21) were to be dropped, the 
remaining equation would be that given by Enskog kinetic theory for the 
diffusion of a small particle in a moderately dense gas. We may now make 
an expansion of the operator ~ ( 1 2 )  by expanding around the free 
streaming term, and also by making a density expansion of the distribution 
functions. Thus, we may formally write Eq. (21) in the form 

[ z - o"R,(1 q~(1) = vl (22a) 
n = l  ] 

to be compared with the exact kinetic equation, written in the form 

z -  " (1 *(1)--=v I (22b) 
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where the methods for obtaining the operators Bn(1 ) are given by DC. (14) 
For n = 1, we have the result 

A A f B,(1) = R,(1) = d2,2(2)T + (12) (23) 

That is, to lowest order in the density, the exact kinetic operator is the 
Lorentz-Boltzmann operator. For n = 2, the number of terms contributing 
to/~2(1) increases. A full discussion of this term is given by Sengers eta/. (2~ 
Out of all of these terms, we have simply retained the term present in 
Enskog kinetic theory, a term given by 

fd2d3,0(2),0(3) W(12)W(13)[ W(23) - 1] T+ (13)GoT + (12)(I)(1) 

and the three-particle ring term, given by 

ffd2d3,o(2)T+(12)GoW(123)[ T+ (13) + T+ (23)(1 + P23)]GoT(12) 

where G O is the free streaming operator. DC did not include the second 
term, and they did not retain the W(123) factor in the ring term, which 
forbids, for example, particle 3 to be within the space occupied by parti- 
cle 1. 

A A 

For n/> 3, the number of terms present both in Bn and R~ increase 
enormously,: We shall therefore simply content ourselves to state that the 
operators R,(1) contain all the terms considered by DC, except that the 
/~,(1) operators also retain extra terms describing the structure of the fluid 
close to the tagged particle, and also contain repeated-ring collision se- 
quences. (4) As DC concluded, these extra terms do not affect the long-time 
behavior of the VCF, but we show in Section 4 that these terms are needed 
to yield the correct form of the Stokes-Einstein relation. 

Having obtained and discussed the ERRA, we would obviously like to 
solve it for some problems of interest. Perhaps the best such problem is 
calculation of the VCF for a tagged member of a pure fluid. Alder and 
co-workers (12a'b) found a fascinating, rich structure in their computer 
calculation of the VCF at liquid densities, which has yet to be reproduced 
quantitatively from a theory. Although our theory is not designed for liquid 
density, it does contain a lot of fluid structure, and we would very much 
like to determine its predictions for liquids. Unfortunately, the extreme 
complexity of the ERRA has stymied our attempts to use it to obtain the 
complete VCF. Thus, we turn to simpler problems. If the calculation is 
restricted to very long times or very large, heavy (Brownian) particles, the 
ERRA becomes tractable; our results are reported in the next two sections. 
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3. THE LONG-TIME TAIL OF THE VCF 

In this section we wish to extract from the ERRA equations the 
asymptotic long-time behavior of the VCF, or alternatively the small z form 
of C(z). Apart from the inherent interest in this effect, the calculation 
should provide a further check upon the quality of the approximations 
made, for the answer should agree with that obtained from the very careful 
analysis of Dorfman and Cohen. (13) 

In order to do do this calculation, it is convenient to use operators and 
variables that are defined over the whole of space, rather than just the 
space exterior to the collision sphere. This is because we later wish to 
introduce a Fourier representation, which requires a knowledge of the 
relevant quantities for all r. Instead of O, we work from here on with the 
quantity, [w(12)0(12)], which vanishes for Ir121 < a I as opposed to being ill 
defined. Since �9 is determined by O as [rl2 [ approaches a I from the outside, 
[wO] is interchangeable with 0 for the purpose of obtaining the VCF. We 
define the operator, 3~r~, which determines [wO], by the relation 

~--~-1(12)[w(12)0(12)] = w ( 1 2 ) 5 ~ - 1 0 ( 1 2 )  (24a) 

where ~ is also well defined for all space; according to the discussion 
before Eq. (24a), ~ - ~  now replaces ~5~ in Eq. (21). Combination of Eqs. 
(13b, c), (20), and (24a) readily gives ~ r ~ -  1; some of the T's acting on O in 
Eq. (13c) must be changed to T's to compensate for the new terms which 
arise when 171 or V 2 act on w(12) on the left-hand side of Eqs. (24a) and 
(13b). 

We next follow the procedure of Van Beijeren (21) and make a fre- 
quency expansion of all the functions and the operators. Thus 

�9 (1) = ~(~ + (I)(1)(1) (24b) 

and 

~-~(12)  = ~--~(~ + ~-~~ (24c) 

where the superscript zero indicates the z = 0 limit of the quantity. In three 
dimensions, we expect that ~(0) is finite, and that ~(1)~zl /2  for small z, so 
terms of order z or higher may be neglected at small z, that is, in the 
determination of the tail. In two dimensions, ~(0) should not exist, since the 
tail here is t-1, corresponding to a ln z dependence. Under these circum- 
stances, Eq. (24b) may not make much sense. Nevertheless, as will be seen, 
our method does yield well-behaved results for d = 2, because ~(o) ulti- 
mately appears in conjunction with some operators in a well-behaved 
combination. Probably the method could be formally justified here by 
working with wave-vector (k) dependent quantities and setting k = 0 as the 
last step in the calculation. For the moment, however, we shall concentrate 
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on d = 3, and simply note that we also obtain a sensible result in d = 2, 
even if some intermediate steps are questionable there. 

We introduce ~ into Eq. (21), as indicated, and expand as in Eqs. 
(24), with the results 

- p G ( a , ) f d 2  ~,o(2) T+ (12)r162176 

_ p2 G 2(a , ) fa2  ~o(2) f+ (12) ~ co)(12) T+ ( 12)(I)(~ 

-p2G(a,)fd2d3q~o(2)ePo(3)I G(123) - G(12)G(13) ] 

x 7~+ (13)~U.~(~ (12)r176 = v, (25a) 
and 

- oG (a~) f a 2  ~,o(2) 7~+ ( 12),~(')( 1 ) 

- pG~-(a0fd2 ~,o(2) ~+ (12):~~ ~+ (12),I,<'(1) 

-p=G(a3fd2d3,o(2),o(3)[ G(123) - G(12)G(13)] 

• T+ (13)~-R(~ (12)(I)(O(1) 

= pG~(,,~)fd2~,o(2)f+ (12)~-~~ T+ (12)cI,(~ 

+ ,2G(aOfd2d3%(2)%(3)[ G(123) - G(12)G(13)] 

• T+ (13)~7~(0(12)T+ (12)~(~ (25b) 

where, in Eq. (25b), we have worked only to lowest order in z ~/2. If we now 
take the scalar product of Eq. (25a) with q~o(1)(I)(1) ( l), and take the scalar 
product of Eq. (25b) with ~(l)cl)(~ integrate both equations over vz, and 
subtract one from the other, we end up with the result 

C(l)(z) ~_- (y l ,  1~(1)(1)) 

= pG(a,)(,~~ 

�9 [ G(al) T+ (12) + p[ G(123) - G(12)G(13)] T+ (13)] 

• i~-~(')(12)T+ (12)~(~ (26) 

where C(O(z) is the small z form of the VCF, and the angled brackets 
denote a scalar product, to be found by multiplying the function inside by 
the MaxwelIian distribution function for all the particles involved, and then 
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integrating over all the coordinates of the particles. In order to obtain this 
result, we used the fact that the operators on the left-hand side of Eqs. (25a) 
and (25b) were symmetric, a result most easily seen by using the Mori 
equations, Eqs. (10a) and (10b), and the symmetries of the matrix elements. 

In order to analyze the operator ~-~(1) (12) more fully, we introduce 
the operator, ~(12), defined by 

~ - 1 ( 1 2 ) =  lim ~ - 1 ( 1 2 )  (27) 

Thus ~-1(12)  is the far field operator, and is given explicitly by 

-1(12)0(12) 

= z0(12) + pzfd3e~o(3)h(23)O(13 ) - (v I �9 V 1 + v 2 �9 72)0(12) 

-pfd3q, o(3)[G(al)T + (13) + g(a)T+ (23)(1 + P23)] 0(12) 

+og(a) f dBq, o(B)v3" V3w(23)0(13)- pf  d3epo(B)h(23)Vl" 710(13) 

o2fd3 d4 ~0(3)~0(4) G (14) h (23) T+ (14) 0 (13) (28) 

where h(23) = h(r23 ) = g(r23 ) - I. 
We may therefore write 

~r-~- '(12) = ~ - ' ( 1 2 )  - S(12), (29) 

where S(12) is that part of ~ r ~  1)(12) that is only nonzero for values of Ir121 
close to a v It is then easy to show that 

~ ' ) ( 1 2 )  - [ 1  + ~ ( 1 2 ) S ~ ~  1 + S~~176 

(30) 

to lowest order in z, where SO)(12) is the zero-frequency part of S(12), and 
~O)(12) is the low-frequency part of the operator ~(12). The point of all 
these manipulations is that if, to lowest order in the frequency, we can 
replace the ~-~(12) operator on the right-hand side of Eq. (30) by its 
zero-frequency form, ~r-~<~ then substitution of Eq. (30) into Eq. (26) 
yields an expression for the small-z form of C(z) involving the relatively 
simple ring operator ~1)(12) instead of the complex operator .~--7~1)(12)" 

From now on, the methods used will be very similar to those used by 
DC. O3) The Fourier transform of an operator, 0(12), is denoted by 
t)k~k2(12) and is defined by 

Ok,k2(12) = fdrl2e-'k"r'2O(12)e '~'2"r'~ (31a) 

where the integral over r12 goes over all space. We then have the inverse 
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relation 

f f - -  . 
/ k  I �9 r - t k  2 �9 r ~ dr128(r - r12)O(12)8(r12 - r') = (2~r) -2a dk! dk2e Ok~k2(12)e 

(31b) 

where d is the dimensionality of the system. When ()(12) is taken to be 
~ (0 (12)  in Eq. (29a), it is found that ~k~2(12) is diagonal--that is, it is of 
the form 

~k(~2(12) = (29r)d8 (k, - k2)~k<))(12) (32) 

We now made a spectral decomposition of ~k<))(12), by expanding it in 
terms of the left and right eigenfunctions of the operator ~kW)(12), which 
we denote by Ei,~2 (12) and oPi,~ (12), respectively, for the ith eigenfunction. 
Thus we write 

~k())(12) = ~] o~176 (33) 
i 

Use of Eqs. (31)-(33) in Eq. (30), with substitution of the result into Eq. 
(26), yields 

pG(al)  
C(l)(z)  - f d k  ~-] I ($(~ G(al) T+ (12) 

J i k  t- 

+ p[ G(123) - G(12)G(13)] T+ (13)] 

• (1 + ~'-~(12)S(~ ik .... o~ 

• 

X (Ei,k(12)e -ik .... 

• (1 + ,~<~176 T+ (12)~~ 

(34) 

where the subscript a denotes a Cartesian component of a vector. The small 
z form of the right-hand side of Eq. (34) arises from the hydrodynamic 
eigenfunctions of the operator ,.~k(1)(12)--the nonhydrodynamic eigenfunc- 
tions give contributions to the VCF that decay away roughly exponentially 
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in time over the period of a few mean collision times. Furthermore the 
long-time tails arise from the small-k portion of the k integral, so the value 
of C (0 (z) may be obtained simply from the small-k values of the hydrody- 
namic eigenfunctions and eigenvalues of the operator ~ 0 ( 1 2 ) .  The hydro- 
dynamic eigenfunctions consist of products of a diffusive mode for particle 
1 with fluid hydrodynamic modes for particle 2, and they may be calcu- 
lated for small k by the methods described by DC (13) and R6sibois and De 
Leener: 2) The dominant  long-time tail of the VCF comes simply from the 
product of the fluid shear modes with the diffusive mode. Thus the only 
eigenfunction needed, which we call C~(12), is given by 

d~L(12) ---- d)~(12) = (/3m)1/2(1 -- /~/~) �9 v 2 + O(k) (35a) 

and 

(o~  = [z + k2(DE + rE) + O(k4)] -x 

-[k2(De+ve)+O(k4)] -I (358) 

where/3 = (k~T)~  1, with T being the absolute temperature and k B Boltz- 
mann's constant, 1 is the unit tensor,/~ is a unit vector parallel to k, D E is 
the Enskog value of the diffusion constant, and v E = ~e/pm, where ~/e is 
the Enskog value of the shear viscosity. Explicit expressions for D E and ~/E 
in terms of the fluid properties are given in Ref. 2. We expect the 
expansions in Eqs. (35a) and (35b) to be valid for Ikl < k~, where k~ is a 
cut-off wave vector, of the order of an inverse mean free path of the fluid 
particles. We thus obtain C(~)(z) from the expression 

pG(al) ~lkl<ckdkf~(k,z)f~(k){ IZ Jr" k2: D E "J-liE] "J'- O(k 4) 3-I c<1)(') - 

- I k2[ D E -]-UEI At- O(k4)l -t ) 

(36a) 

where 

f•(k,z) = (~~  G(a,)T+ (12) + O[ G(123) - G(12)G(13)] T+ (13)] 

• (1 + ~r--~(12)g(~176 (36b) 

and 

f~(k) = (8~(12)elk'r'2[1 + g ( ~ 1 7 6 1 7 6  (36c) 

Because S(~ contains only contributions from values of [r12 ] close to a 1, 



Enskog Repeated-Ring Kinetic Equation 167 

and vanishes as [r]21~ oo, the Fourier transform, S~~ contains no 
term proportional to 6(k I - k2). It is then possible to show that, for small 
values of z, the operator ~ '~(12)  may be replaced by ~--~(~ the 
correction, ~7~r (12), only contributing to higher order in z. Then, in 
order to obtain the long-time tail of the VCF, we replace f~(k,z) by 
f~(k, 0)--= f~(k), and take the inverse Laplace transform of the quantity in 
curly brackets in Eq. (36a). Upon expanding f~(k) and ./~'(k) in powers of 
]k], and carrying out the k integral, we obtain the result for the long-time 
tail of the VCF, denoted by Co~(t), in the form 

C~(t) = (~~ .[ G(al)T + (12) + p[ G(123) - G(12)G(13)] T+ (13)] 

X (1 + ~-~(~176 pG(a,)flm 108 ((rE + DE )~rt) -3/2 

• (v2 "(1 + Sr176176 (12)O(~ (37) 

where we have specialized to the case of three dimensions. From the 
definition of S(~ [Eqs. (13b), (13c), (20), (24a), (29)], we see that 

S~~ = G(a,)T+ (12)v 2 (38a) 

and a little algebra shows that 

- ~  ~O)(r)ffr (12)v 2 = ~ ~o)(12)G(a,) T+ ( 12)v 2 + ( 1 - w ( 12))v 2 

- (  m~lm ) G(al)~F~(~ + (12)Vl + (1 - w(la))v 2 

(38b) 
where we have made use of Eqs. (7a) and (7b). Hence 

(O~~ �9 ( G(a])T + (12) + p[ G(123) - G(12)G(13)] T+ (13)} 

X (1 + ~5~(~176 

= _ [ m ,  Co) . 
m )(O ( 1 ) { G ( a l )  T+ (12) 

+ [ G(ai)T+ (12) 

+ p(G(123)-  G(12)G(13)) T+ (13)] 

x ~~162176  } Vl> 

= - ( 3 / t ~ m p )  (39) 
where we have used the result T+ (12)(1 - w(12))v 2 = 0 to obtain the first 
equality, and have used the symmetry of the operator and Eq. (25a) to 
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obtain the second. Similarly it may also be shown that 

(v  2 �9 (1 + g (~  (~  (12)@(~ = - (3 / f lm)(pG(a, ) ) - '  

Combining Eqs. (39) and (40) with Eq. (37) yields the final result 

Coo(t) = (12f lmp)- ' [  ~r(v E + D E ) t ]  -3/2 

(40) 

(41) 

the same answer as obtained by DC in three dimensions. In two dimen- 
sions, a similar analysis yields once again the results of DC with a t -  1 tail, 
subject to the caveats discussed at the beginning of this section. 

To summarize the results of this calculation, we have shown that our 
RRA equations, Eqs. (13a)-(13c), yield an asymptotic long-time tail, given 
by Eq. (41), for the VCF for a particle of arbitrary mass and size. This 
result is the same as that obtained by DC from "a single iterate" of their 
ring equation, (14) for the case of self-diffusion. So firstly, this gives us some 
confidence about the quality of our approximations made in deriving Eqs. 
(13a)-(13c). Secondly, because we have calculated the asymptotic long-time 
behavior and the answer agrees with that obtained from a single iterate of 
the ring equation, this calculation illustrates the cancellation that takes 
place between higher-order iterated rings and repeated rings--a fact 
pointed out by Van Beijeren. (22) Thirdly, we note that in two dimensions 
the true asymptotic long-time behavior of the VCF is proportional to 
t-1(log t) 1/2, not t-1.(22,23) In terms of kinetic theory, this enhancement of 
the long-time tail is due to "ring within ring" and higher-order collision 
sequences, terms which are hidden in the memory function in our formal- 
ism. Finally, mode coupling approaches (24'25) and very systematic kinetic 
theory approaches (22'26) indicate that Eq. (41) remains true at arbitrary 
fluid densities, provided v E and D E are replaced by the true fluid kinematic 
viscosity and the true diffusion constant; respectively. In a subsequent 
paper, we show how this result may be obtained by retaining the memory 
function in the kinetic equations and then employing the methods just 
described. 

4. THE STOKES-E INSTEIN  RELATION 

As we said in the Introduction, one requirement of a good kinetic 
theory is that it should give the Stokes-Einstein relation for the diffusion 
constant of a Brownian particle. For the case of a Brownian particle in a 
dilute gas, the work of Van Beijeren et aL (s) and Cukier et aL (~5) showed 
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that the R R A  had this desired property. We now examine the Brownian 
limit of the E R R A  equations. 

Firstly, we use the boundary conditions, Eq. (13c), to rewrite Eq. (13a) 
in the form 

+ pG(a,)fd2 (v,2" V, W(12))0(12)@0(2 ) Z(I~(1) 

+ p f  d2(v I �9 V , [ G ( 1 2 ) -  G(al)W(12)])O(12)@o(2)= vl (42) 

As we discussed elsewhere, (9c) in order to obtain the VCF from Eq. (42) to 
lowest order in (m/ml), as is required for the Brownian particle case, 0(12) 
is required both to zeroth and first order in (m/ml) 1/2. This would prove to 
be rather a difficult calculation, but luckily it is possible (9c) to rewrite Eq. 
(42) in a form that only requires 0(12) to lowest order in (re~m j) ]/2. To do 
this, we rewrite the boundary conditions in the form 

G(al)[(I)(v~)--]- 0(Vtl, v~ , r l2) -  (I[)(Vl)- 0 ( v , , v 2 , r l 2 ) ]  

+ old3 @o(3) (G(123)  - G ( 1 2 ) G ( 1 3 ) ) [  O (v',, v 3 , r,3 ) - 0 (v , ,  v 3 , r ,3 ) ]  

= 0 ,  a ,  (43) 
where v],v~ are the postcollision velocities, given by Eqs. (7). If this 
equation is multiplied by v]V2@o(1)@o(2 ) and integrated over the velocities, 
we obtain the result 

f d u  l dv2@o(1)@o(2)(Pl2. Vl2)(v I �9 0 (12 ) )  

= (m/m , ) f d , ,  dr= (v2" P,2)2( ,2 �9 0(12))@o (1)@0(2) 

+ O(m/ml) 2, Jr,2 [ = a, (44) 

If we now take the scalar product of Eq. (42) with vl@0(1 ) and integrate 
over vl, we obtain after using Eq. (44), the result 

zC(z) + oG(a,)(m/ml)fdl d2@0(2)@0(1)(2,2, v2)2(P,2 �9 0(12))3([r~21 - a,) 

+p( Br/m,)fal a2@o(2)@o(1)[ 0(12) �9 7 , (G(12)  - G(a,)w(12)) 

= 3kBr/m,(l  + O(m/m,)) (45) 

Clearly, 0(12) is only required to lowest order in (m/mO 1/2 in order to 
obtain C(z) in this equation. We may further manipulate this equation by 
multiplying Eq. (43) by v2v2@0(1)@0(2 ) and integrating over v I and v 2, and 
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using the resulting equality to reexpress Eq. (45) as 

zC(z) + p G ( a l ) ( m / m O f d l  d2 ~o(1),0(2)6(Ir~2 [ - a~)(P~2, v2)(v 2 �9 0(12)) 

+o(k.r/m,)fdl d2 ~0(1),0(2)(0(12 ) �9 V,[ G(12) - G(al)W(12)I  ) 

= 3kBT/m ~ (46) 

The second term now looks more like the integral of the normal component 
of the stress tensor over the surface of the collision sphere. The third term 
may be regarded as an extra contribution due to an integral of a number 
density multiplied by the gradient of the potential of mean force. 

We now return to the Brownian limit of Eq. (13b). In this limit, 

( m l / m  >> 1, al /a  >> 1 and a2/m >> a~/ml) 

we obtain, to lowest order in (m/mO 1/2, 

zG(12)0(12) + zof,t3 o0(3)[ G(123) - G(12) G(13) I 0(13) 

- G(12)v2 �9 V20(12)  - ofd3,o(3)G(123)T+ (23)(1 + e23)0 (12)  

-0fd3,0(3)[ G(12)G(13)V3W(13) - G(123)V3W(123)I �9 v30(13) 

= 0, Ir121 > a 1 (47) 

For large values of [rl2 I, where the fluid equilibrium structure is 
uneffected by the presence of the Brownian particle, we may use the 
Chapman-Enskog procedure to find the form of 0(12) both to zeroth and 
first order in powers of (l/a1). That is to  say 0(12) will be given by the 
hydrodynamic solution, which will vary slowly in space provided the 
frequency, z, is of order [( ~m)l/2al] - l or less. When, however, [r121 is just in 
a few molecular diameters away from the surface of the collision sphere, 
the static distribution functions, present in Eq. (47), which describe the 
influence of the Brownian particle upon the equilibrium fluid structure, will 
vary rapidly over the dimensions of a fluid particle. We may regard this 
region, extending several molecular diameters away from the surface of the 
collision sphere, as a static boundary layer. Within this layer the Chapman-  
Enskog expansion of 0(12) will fail, and the hydrodynamic form of 0(12) 
will not be a solution. 

We thus appear to have a problem. In order to use the boundary 
conditions, Eq. (43), or to use Eq. (45) to obtain the VCF, we require 
knowledge of the form of 0(12) within this static boundary layer. Unfortu- 
nately, though, we are only able to solve Eq. (47) for 0(12) outside of this 
region, and have little knowledge about the form of solution inside, 
apparently where it is most urgently required. In order to make further 
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progress, we must attempt to reexpress Eq. (45) so that it only involves the 
far-field, hydrodynamic solution of 0(12), and we must try to extract 
boundary conditions that this function must obey exterior to the static 
boundary layer. 

Let us introduce the microscopic length ~, such that ~ / a  1 << 1, and 
such that for It12] >/a 1 + if, G(12) -- 1 and G(123) = G(13) + h(23). Thus 
is large enough so that all effects of the tagged particle upon the fluid static 
structure have vanished a distance of ~ from the particle's surface. We may 
take ~" to be several mean free paths, or several fluid particle diameters, 
whichever is larger. We then have from Eq. (47) the equation 

z0(12) + zp f d3q, o(3)h(23)O(13 ) 

- v 2 �9 720 (12) - og(a)fd3 ,~0(3) T+ (23)(1 + P23)0(12) 

+pa2g(a)fd3d~q,o(3)~(r23 - a8 ) (8 . v3 )0 (13  ) -- 0, Ir121 > a 1 + 

(48) 

In the Brownian particle limit, the required solution of Eq. (48) is the 
hydrodynamic solution, denoted by 0/t(12 ). This may be obtained by 
projecting 0(12) onto the hydrodynamic eigenfunctions of the kinetic 
operator to 0 ( l / a l ) ,  but, as pointed out by Van Beijeren et al . j  5) it is much 
more convenient to project onto linear combinations of these eigen- 
functions--the so-called normal forms. For this particular operator, we 
therefore seek a solution of the form 

{ O~l(12) = f~(r) + ( flm) '/2 v2~+ 1 + - - ~  pg(a) 

- w } yv O (r) • v 

where 7 ~ V~ and r = rl2. In this equation, f, ,  ~ ,  and fv are functions of r 
that are yet to be found, b E is given by 

b E = 2qrpa3g(a)/3 (50) 

and the functions A(v~) and B(v~) are the same as those used by Van 
Beijeren et al. ~5~ and are defined by 

~.. (v2)q,o(2)A (v22)v2 = ( f lmv2/2  - 5/2)v2q, o(2 ) (5 la) 
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and 

Xe(v2)q~o(2)B(v~)[v~vf- (v2/3)6.r = [v~v~- (v~/3)6~r (51b) 

where )t B (v2) is the linearized Boltzmann operator. These functions have the 
additional properties 

fdv  2 ~o(2) v4B (v~) = - 15 n B / fl m2 (52a) 

fdv2 0o(2)v~A (v~) = 0 (52b) 

and 

f dV2 ~~ ( flmv22 25) v2A(v2)= -3kB/k8 (52c) 

where ~B and a B are the Boltzmann values of the shear viscosity and 
thermal conductivity of the fluid, respectively. Substitution of Eq. (49) into 
Eq. (48), followed by multiplication by ~0(1)00(2), V2~o(1)~o(2 ) and 
(fimv22/2- 3/2)0o(1)00(2), respectively, a n d  integrating over v 2 and vl, 
yields the following coupled equations for f,, fv and fr: 

zS(O)f~(r) + (flm)-'/2V/j. fg"(r) = 0 (53a) 

z~"B(r) + (tim)-l/2V"f~(r) + (2/3)1/2( tim)-1/2(1 4- bE)Va[flT(r ) 

_ Qle/om)V~,~z _ (1/pm)Qlz/3 + ~e )V.Vrj?W/~(r) = 0 (53b) 

and 

zf~(r) + (2/3)1/2(fim)-'/2(1 + bE)V~t~"(r) - (2X E/3pkB)V2f~(r) = O, 

Ir121~a l + ~  (53c) 

Here ~/e, h E, and ~ z are the full Enskog transport coefficients of the shear 
viscosity, thermal conductivity, and bulk viscosity of the fluid. They are 
given explicitly by 

~?e = (1 + 2be/5)2~?B/g(a) + 303/5 (54a) 

h E = (1 + 3be/5)2~B/g(a) + 3kB~/2m (54b) 

and 

~e = 5 (54c) 

where 

(bZ)Z(mkBT) 1/2 
03 = g(a)aZ~r3/2 (54d) 
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Lastly, the quantity S(0) in Eq. (53a) is the zero-k limit of the structure 
factor of the fluid, S(k) = 1 + ph(k). 

Clearly Eqs. (53) are closely related to the normal, linearized hydrody- 
namic equations. In order to make this more explicit, we note the following 
results, true for a hard-sphere fluid: 

-~T )o = Pks(1 + bE) (55a) 

OP ) = kBT/S(O) (55b) 
~P r 

and 

Cv = 3 k B / 2  ( 5 5 c )  

where P denotes the pressure and C v the specific heat per particle at 
constant volume. If we now take the scalar product of Eq. (53) with a 
constant vector, which we call U(z) and define 

and 

8,,(~,z) = s ( o ) f . ( ~ )  �9 u ( ~ )  

pv~ (r, z) = ( ~m)- 1/2f~ (r). U~(z) 

(56a) 

(56b) 

ST(r, z) = (2/3)1/2(T/0)tr(r). U(z) (56c) 

then these quantities obey the normal linearized hydrodynamic equations, 
appropriate for solving for the fluid fields around a sphere whose frequen- 
cy-dependent velocity is U(z). 

These calculations have thus given us the form of 0(12) for large 
values of Irlal, but as pointed out previously, this cannot yet be used to 
determine the VCF because Eqs. (43) and (46) require knowledge of 0(12) 
for a 1 < Ira2l < a 1 + ~, and within this region 0(12) 4: 0/t(12) because of the 
effects of the rapidly varying static distribution functions in Eq. (47). The 
next steps are to reexpress Eq. (46) so that it involves only the far-field 
soluotion, 0/~(12), and then to obtain boundary conditions on the functions 
f., fv and f r  at Ir121 -- al + ~'. To do this, we return to the full equation for 
0(12), and consider the conservation equations. That is, we multiply Eq. 
(47) through by q~0(1)~0(2), vzq,0(1)q~0(2) and ( f imv2 /2 -  3/2)q~0(1)~0(2), 
respectively, and integrate over the velocities. We then obtain the equations 

zG(12)((O'~(12))) + zo f dr 3 [ G(123) - G(12)G(13) I((O'~(13))) 

- G(12)V~((v~O~(12))) = 0 (57a) 

zG(12)((v~O~(12))) - G(12)V~. ((v~v~0~(12))) 

- p  f dr 3 G(123)((v~T+ (23)(1 + P23)0~(12))) = 0 (57b) 
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and 

3 ] T+ (23)(1 
2 1 

+ P23)0~(12)) ) = 0  

(57c) 

where ( ( . . - ) )  means multiply through by the Maxwellian distribution 
functions of all the particles involved, and then integrate over all velocities. 

These results may be used to rewrite Eq. (46) so that it only requires 
knowledge of OH(12), and not 0(12) for Ir12] < a I + ~ about which we know 
very little. To do this, we integrate Eq. (57b) over the volume (V) between 
two concentric spheres, the inner of radius a 1, the outer of radius a~ + ~'. 
For Ir12] = a I + ~" thereabouts, or 0(12) = 0u(12) and all influence of the 
Brownian particle upon the fluid's static structure has vanished. Then, 
using the explicit form for 0H(12) given in Eq. (49), the hard-sphere YBG 
equations, Eq. (12), and finally Eq. (46), we find 

+ (okaT/m,lfdr2d(Jr,21- a , -  ~)P~2 zC(z) 

�9 {f:(r,2 ) + (2/3)'/2(1 + bE)f~(r12) 

- (/~m)'/2(27/E/om)P{2P~27 , ~ v  (r12) 

~ ~ ~ m ~ l j 2 ~  E m 2~je/3)/om)Vvyv~(r,2)} = 3 k s T / m  l (58) 

Note that the factor of G(al) in front of the integral over 0 has 
disappeared in going from Eq. (46) to (58); a spurious G(al) would be 
obtained were the boundary layer ignored�9 This again points out the ease 
with which deviant G(a0's can enter moderate-density kinetic theory. To 
obtain this result, we have required that the term z f v d r  2 G(12)((v~O~(12))) 
be small compared to the integrals of the other terms in Eq. (57b). Because 
so little is known about the behavior of 0(12) within this volume, we cannot 
estimate terribly precisely the value for z required to make this term 
sufficiently small to be negligible. However, if we assume that ((v~0B(12))) 
is not too drastically different in magnitude from ((v~0g(12))) (that is, 
I((v~0B(12)))l << (al/~l((v~O~(12)))l), then if z ~< 0 (( t~m)l/2al)- l) this 
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term will only affect Eq. (58) to higher order in powers of (~'/al). The form 
of the second term of Eq. (58) is now very similar to the hydrodynamic 
form for the force upon a sphere as a fluid flows past. The first two terms 
correspond to the integral of the pressure over the surface, the first term 
corresponding to that part of the pressure caused by number density 
fluctuations, the second corresponding to that part coming from tempera- 
ture fluctuations. The third and fourth terms correspond to the dissipative 
part of the hydrodynamic stress tensor--that part coming directly from the 
fluid's velocity field. 

All that now remains is to "transfer" the boundary conditions given by 
Eq. (43) at Ir~al = al, to  the surface of a sphere of radius Irld = al + s'. To 
do this we use methods that are rather similar to those used by Ronis et 
a/. (18) in their investigation of hydrodynamic boundary conditions, and 
Van Beijeren et al. (5) in their investigation of the extended Boltzmann 
equation for a diffusely reflecting sphere. Firstly we consider Eq. (57a). We 
take the scalar product with P~2, divide through by G(12), and then 
integrate over the volume V defined previously. Following the arguments 
outlined in the last paragraph, we can drop the first two terms of Eq. (57a) 
provided that z is sufficiently small, and we are left with the result that 

fdr28(lr~21 - a,)F~2F{2((v~O~(12))) 

= f d r  2 8([r121 - a 1 - ~ )P72P{2((v)VO~( 12))) 

- j~dr 2 ((v~O ~ (12))) ( 8~v - ?~?,~2) (59) 
Ir,d 

Again, provided that ((v~O"(12))) does not differ too drastically from 
((v~0/~(12))) within the volume V, then it is clear that the second term on 
the right-hand side of Eq. (59) is of O(~/al)  times the other terms, and 
hence may be neglected. Furthermore, at 1r12 ] = a I + g, we may replace 
0(12) by Ou(12 ). Finally, we may use Eq. (43) to obtain the left-hand side 
of Eq. (59), by taking the scalar product of Eq. (43) with vlq~o(1)q~0(2) and 
integrating over all velocities. This procedure finally yields 

dr28(Ir121 - a~)--5--  = (tim) ~/2 dr28(Ir~21 - a ~ -  ~')P~2-fv(r~2)- ~12 

(60a) 

to lowest order in (~/aj), or more straightforwardly 
+ +  

C(z ) /3  = (tim)-'~2?,2. fv(r~2) �9 P12, Ir~d = al + ~" (60b) 

This is the equivalent of the hydrodynamic normal velocity boundary 
condition. 
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A similar procedure may now be applied to the remaining conserva- 
Aot ^~x  tion equations. Thus if Eq. (47b) is multiplied through by (~,/~ - r12r12) and 

the result integrated over the volume V, and similar assumptions are made 
as discussed previously about the magnitude of moments of 0(12) within 
this volume, we obtain the equivalent of the zero tangential stress boundary 
condition, which may be written 

[ ~72(P~2~2 -- 8ae ) + P~2(~2P?2 - 3av)]V{j~aB(rl2) = 0, Ir,d = a, + 

(61) 

again to lowest order in (~ /a  O. If instead one were to multiply Eq. (47b) by 
:~2P~ and integrate, one would then simply regain the equality used to 
convert Eq. (46) into Eq. (58). Finally if Eq. (47c) is multiplied by P1~ and 
integrated, the normal temperature flux boundary condition is obtained in 
the form 

6,~" VfT(r,=) = 0, lr,=l = a I + ~" (62) 

Thus, provided that the required moments of the functions 0(12) do 
not grow too excessively as one moves from the bulk fluid into the volume 
V, that is, for example, [((v 2 . 0(12)))1 << (al /~ ') l((v 2 �9 0,4(12)))1, then we 
have succeeded in showing that the VCF may be obtained from the 
solution of the linearized hydrodynamic equations, Eq. (53) subject to 
hydrodynamic slip boundary conditions at the surface of a sphere of radius 
a I + g, that is, boundary conditions exterior to the static boundary layer. 
These solution may then be substituted into Eq. (58), which then yields the 
Stokes-Einstein form for the VCF, with Enskog transport coefficients. 

To be more explicit, we now consider the z = 0 limit of the preceding 
equations. Solution of Eq. (53), subject to the boundary conditions given in 
Eqs. (60b), (61), and (62), yields 

•E t (63a) fn(r) = (t im) - ~  a ,D r-- ~ 

(8o. + ( Bm),:  D f:B(r) - r -~ (63b) 

and 

f r (r  ) = 0 (63c) 

Substitution of these quantities into Eq. (58) yields the Stokes-Einstein 
result for slip-boundary conditions, i.e., 

D = k B T /amlea l  (64) 

where we have replaced (a I + ~') by al in these last four equations, as 
~ /a  I << 1. 



Enskog Repeated-Ring Kinetic Equation 177 

In summary, then, it appears that the ERRA equations do yield the 
Stokes-Einstein relationship with Enskog transport coefficients. We now 
shall briefly consider the simpler ERRA theory proposed by Mehaffey and 
Cukier, ~15) contained in Eqs. (15) and (17). In the Brownian particle limit, 
because their boundary conditions differed from ours, they would not have 
the third term on the left-hand side of Eq. (46). The hydrodynamic solution 
for 0(12) would be given by Eqs. (49)-(53), for all Ir121 >~ al, as their 
equations do not contain the effects of the static distribution functions 
describing the disruption of the bulk fluid structure due to the presence of 
the tagged particle. The boundary conditions would be identical to Eqs. 
(60b)-(61), and, at z = 0, would lead to the same hydrodynamic solutions 
given by Eqs. (63a-c). However, when the hydrodynamic 0(12) is substi- 
tuted into their version of Eq. (46), the Stokes-Einstein result is not 
recovered. Firstly, the spurious G(a 0 is present. Secondly, although the 
pressure contribution to the friction coefficient is given correctly, the 
contribution due to fv is given incorrectly--it contains instead of an Enskog 
shear viscosity, a "semi-Enskog" viscosity, given by (1 + 2be/5)~lB/g(a). 
Furthermore, the correctness of the pressure contribution is partly fortu- 
itous; the OP/OT) term is incorrect, but in Stokes' problem, 6 T =  0. 
Clearly, then, the extra detail contained in the ERRA Eqs. (13) is necessary 
in order to obtain the correct form of the stress tensor, Eq. (58), and hence 
to obtain the correct, Stokes-Einstein relation for the VCF of a Brownian 
particle. It is important to note, in this context, that the normal solutions of 
the Enskog equation are not produced from their Boltzmann cousins by 
simply changing "B"  subscripts to "E"  subscripts in parameters--if this 
were true, the MC approach would give a result containing ~ E. Equations 
(49) and (54a) show, however, that the "parts" of ~/E enter O n in a 
seemingly disorganized fashion, and they must be carefully reconstructed in 
the calculation of D before anything looking like ~/E appears. This recon- 
struction requires the new features of the ERRA at r12 = a and r12 ~> a. 
Although the physical meaning of all this is not transparent to us, consider 
that one part of r/e(~3) arises from "collisional transport" of momentum, 
which occurs only when two gas molecules touch. This effect surely must 
be altered when the touching pair is further constrained to be near the 
tagged particle. So, it makes some sense that care must be taken in the 
boundary regime if the contribution of ~ to D (missing in MC) is to be 
obtained correctly. 

5. DISCUSSION 

In the preceding sections we have obtained a repeated-ring kinetic 
equation for the VCF of a particle by using Mori's generalized Langevin 
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equation for hard spheres and neglecting the "memory term." We argued 
that this memory term only contained dynamical events more complex 
than rings or repeated rings and then showed that the proposed equations 
yielded an asymptotic long-time tail for the VCF in agreement with that 
obtained by Dorfman and Cohen, O3) and also yielded the Stokes-Einstein 
relation with Enskog transport coefficients when the tagged particle was a 
Brownian particle. We believe that this is good evidence that our proposed 
ERRA equations are at least sensible, and suggests that use of Mori theory 
is a relatively painless way of generating such kinetic equations. 

The outstanding problems would appear to be firstly how one might 
obtain good, numerical solutions to those complex, coupled equations, and 
secondly, how might one set about improving these equations so they might 
deal with diffusion of a very light tagged particle (the Lorentz gas limit) 
and also with diffusion at liquid densities. 

To deal with the first point, as we said in the Introduction we believe 
that use of Cercignani's variational principle is a promising way of obtain- 
ing the VCF of a tagged particle from the low-density RRA equations. It 
would therefore be logical to attempt to apply a version of this method to 
the ERRA equations, but so far we unfortunately have made little progress. 
As for the second point, we can offer some speculations as to how t h e  
ERRA equations may be improved. As we said, they work best for a 
massive tagged particle in a moderately dense gas. They cannot describe 
diffusion in a liquid because the ERRA equations require that the sur- 
rounding fluid be well described by the modified Enskog theory. (17,27) One 
way of systematically improving the calculations would be to introduce a 
third variable, C(123), into the Mori formalism where C(123) would be a 
three-particle term. If this were included, and if the new memory function 
were to be thrown away, then a kinetic theory containing all ring-within- 
ring and repeated-ring-within-repeated-ring collision sequences would 
emerge, again the binary collision operators "dressed" with the required 
static distribution functions. Clearly even more complex equations may be 
obtained by introducing four, five, six, etc. body terms into the Mori 
formalism and dropping the memory term, but the problem with this 
approach would be firstly that one might have to introduce very many 
variables in order to obtain an accurate liquid state theory, even assuming 
the procedure converged, and secondly the resulting coupled equations 
would be horrendously complicated and intractable. Another, possibly 
more promising approach is to approximate the memory function in some 
way, rather than simply neglect it. Thus, as we shall show in a subsequent 
paper the effect of the memory term in Eqs. (5d) is to replace the Enskog 
transport coefficients by the true, fluid coefficients both in the long-time 
tail calculation and in the Stokes-Einstein relation, This is because far 
away from the tagged particle we know that the fluid obeys the "true" 
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kinetic equation, as opposed to the approximate modified Enskog kinetic 
equation. An attractive possibility, therefore, is to propose a self-consistent 
repeated-ring approximation, where the far field Enskog operators are 
replaced by the true fluid and tagged-particle kinetic operators. Previous 
work on the Lorentz gas (9b'28) and on pure fluids (11) suggests that these 
self-consistent theories are superior to non-self-consistent theories--for 
instance, when the Lorentz gas scatterers are allowed to overlap, the 
self-consistent theories correctly predict a critical density of scatterers at 
which the diffusion constant vanishes, whereas the non-self-consistent 
theories do not show this behavior. This self-consistent approach in kinetic 
theory is originally due to G6tze et al. (28~ 

Of course one problem with a self-consistent theory is that although 
the large It12[ form of the operator may be known, as are the boundary 
conditions on the collision sphere, it is unclear how best to approximate the 
kinetic operator inside the boundary layer region. In spite of this, self- 
consistent theories seem so far to be the best candidates for a successful 
kinetic theory for diffusion in dense fluids. 

NOTE ADDED IN PROOF 

After this paper was submitted, two closely related articles by Sung 
and Dahler [J. Chem. Phys. 78:6280; 6264 (1983)] appeared. The method of 
derivation of the kinetic equations is basically the same. In the Stokes- 
Einstein law calculation, their treatment of the second equation (analogue 
to Eq. 9b) is almost identical to ours. They obtain Enskog normal solutions 
in which the hydrodynamic fields are given by solutions to Enskog hydro- 
dynamic equations, with slip boundary conditions. They state that the slip 
Stokes-Einstein law immediately follows (discussion after their Eq. 3.21). 
While this is true in a hydrodynamic calculation, a fully Kinetic theory of 
diffusion should be based upon substitution of the solution of the second 
equation into the first repeated ring equation (analogue of Eq. 9a). This 
would be straightforward if the normal solution were the true solution at 
the surface of the collision sphere. However, such is not the case, and the 
straightforward procedure gives the wrong answer. We suggest that the 
analysis presented here shows that finding the correct way to use the 
normal solution in the first equation is an important step in solving the 
coupled repeated ring equations. 
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